Laws of Exponents

Here are the Laws (explanations follow):

Law	Example
$x^1 = x$	6 ¹ = 6
$x^0 = 1$	7° = 1
$X^{-1} = 1/X$	$4^{-1} = 1/4$
$x^m x^n = x^{m+n}$	$x^2x^3 = x^{2+3} = x^5$
$x^{m}/x^{n} = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$
$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$
$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$
$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$
And the law about Fractional Exponents:	
$x^{\frac{m}{n}} = \sqrt[n]{x^m}$	$x^{\frac{2}{3}} = \sqrt[3]{x^2}$
$=(\sqrt[n]{x})^m$	$=(\sqrt[3]{x})^2$

LAWS of EXPONENTS SUMMARY

$$\chi^m + \chi^n = \chi^{(m+n)}$$

$$\frac{x^m}{x^n} = x^{(m-n)}$$

$$\left(\chi^{in}\right)^n = \chi^{inn}$$

$$\left(XY\right)^{m} = X^{m}Y^{m}$$

$$\left(\frac{X}{Y}\right)^{m} = \frac{X^{m}}{Y^{m}}$$

$$x^0 = 1$$

$$x^{-n} = \frac{1}{x^n}$$

$$\frac{1}{x^{-n}} = x^n$$

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^{n}$$