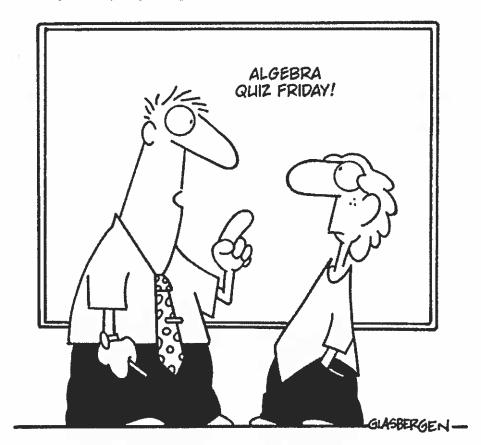
Key 2019

Math 10C

Final Review

© Randy Glasbergen / glasbergen.com



"It's important to learn math because someday you might accidentally buy a phone without a calculator."

Unit 1: Number

Prime Number: a whole number with exactly two factors (ex: 1, 3, 7, 19)

Composite Number: a whole number with more than two factors (ex: 25, 78, 100)

Prime Factors: factors of a number which are prime

Prime Factorization: expressing a number as the product of prime factors

Tree Diagram

On Swers will

Vary.

$$2 50$$
 $5 10$

Greatest Common Factor (GCF): largest whole number which divides exactly into each of the members of the set

Lowest Common Multiple (LCM): lowest multiple common between the members of the set

Ex: Determine the GCF and LCM of 35, 231, and 275

35 231 275

$$75 377 555$$
 $711 555$
 $711 557$
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 511
 5

Rational Numbers: can be written as a ratio of two integers \rightarrow repeat or terminate \rightarrow can be converted into fractions

Irrational Numbers: both non-repeating and non-terminating → cannot be converted into fractions

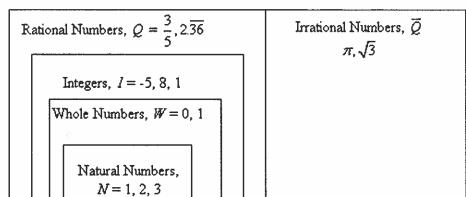
Ex: algebraically and graphically convert 0.36 to a fraction in lowest terms

$$\frac{34}{99} = \frac{4}{11}$$

Real Number System:

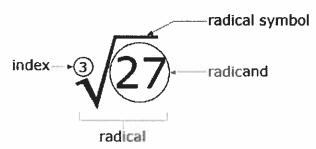
Fractions

No Fractions



Absolute Value Inequalities:

Parts of a Radical



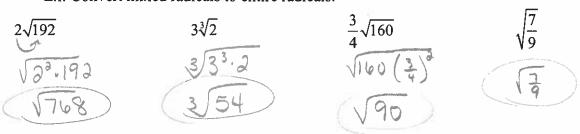
The product/quotient of the roots of two numbers is equal to the root of the product/quotient of the two numbers.

The sum/difference of the roots of two numbers is **NOT** equal to the root of the sum/difference of the two numbers.

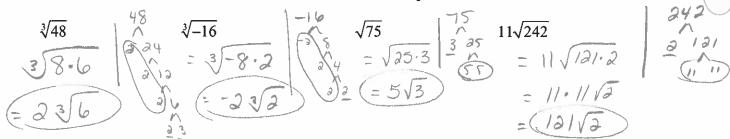
Ex.

$$\sqrt{9} \times \sqrt{4} = \sqrt{9 \times 4} = \sqrt{36} = 6$$
$$\sqrt{9} + \sqrt{4} \neq \sqrt{9 + 4}$$

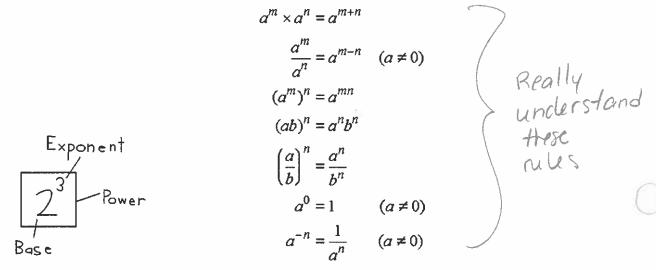
Ex: Convert mixed radicals to entire radicals.



Ex: Convert entire radicals to mixed radicals in simplest form



Unit 2: Exponents



Examples:
$$\frac{10e^{8}f^{12}}{4e^{4}f^{7}} = \frac{5e^{4}f^{5}}{2} \left(\frac{x^{5a+7b} \cdot x^{3a+b}}{x^{a} \cdot x^{2a-7b}} \right) = \frac{x^{5a+7b} \cdot x^{3a+b}}{x^{a} \cdot x^{2a-7b}} = \frac{5x^{3}y^{-8}z^{-2} \div \frac{15x^{8}y^{3}z^{-1}}{x^{5}y^{-3}z^{2}}}{\frac{5x^{3}y^{-8}z^{-2} \div \frac{15x^{8}y^{3}z^{-1}}{x^{5}y^{-3}z^{2}}}{\frac{5x^{8}y^{3}z^{-1}}{15x^{8}y^{3}z^{-1}}} \right)$$
Ex: Write in radical form then evaluate.

Ex: Write in radical form then evaluate.

$$16^{\frac{-3}{4}} = \left(\frac{1}{16}\right)^{\frac{3}{4}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}{3}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}} = \frac{\sqrt{\frac{3}{4}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}}}{\sqrt{\frac{4}}}} = \frac{\sqrt{\frac{3}}}}{\sqrt$$

Ex: Write an equivalent expression using exponents.

$$\sqrt{a^{3}} = \Omega^{3}h_{2}$$

$$(\sqrt[3]{64v^{6}})^{\frac{3}{2}}$$

$$(\sqrt[3]{4}v^{5}v^{3})^{\frac{3}{2}}$$

Unit 3: Measurement

Determine the surface area and volume measurements.

$$SA = 2(9 \times 12) + 2(24 \times 12) + 2(9 \times 24)$$

$$= 216 + 576 + 432$$

$$= 1224 \times 12 \times 9$$

$$= 2592 \text{ in}^{3}$$

Calculate the surface areas and volumes.

$$SA = 2\pi (4.4)^{2} + 2\pi (4.4)(7.2)$$

$$= 121.6 + 199.05$$

$$= 320.7 \text{ cm}^{2}$$

$$= 320.7 \text{ cm}^{2}$$

$$= 126.66 \text{ cm}^{2}$$

$$= 437.9 \text{ cm}^{3}$$

$$= 28.27 + 98.39$$

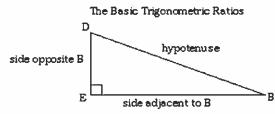
$$= 126.66 \text{ cm}^{2}$$

$$= 320.7 \text{ cm}^{3}$$

$$= 437.9 \text{ cm}^{3}$$

$$= 202.7 \text{ cm}^{3}$$

Unit 4: Trigonometry



$$\sin B = \frac{\text{opp}}{\text{hyp}}$$

$$\cos B = \frac{\text{adj}}{\text{hyp}}$$

$$\tan B = \frac{opp}{adi} = \frac{\sin B}{\cos B}$$

Abbreviations for side lengths:

opp : opposite adj : adjacent hyp : hypotenuse

Figure 6.9

Calculate x:

$$\sin x = \frac{4}{5} \qquad \cancel{X} = 53$$

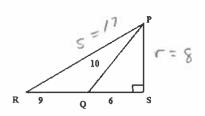
$$\tan 36^{\circ} = x$$
 $\chi = 0.7265$

$$\cos x = \frac{2.3}{4.5}$$
 $\chi = 59$

$$\sin 78^\circ = x$$
 $\chi = 0.978$

* inverse when finding an angle

Solve:



$$15^{3}+8^{3}=5^{2}$$

$$15^{3}+8^{3}=5^{2}$$

$$18^{3}+8^{3}=5^{2}$$

$$=28^{2}$$

$$10^{3}+8^{3}=5^{2}$$

$$=28^{2}$$

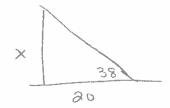
$$10^{3}+8^{3}=5^{2}$$

$$= 53$$
 $LP \Rightarrow tan'(15/8)$
 $= 62°$

$$48 = 50^{\circ}$$
 $tan 40 = 9$
 $a = 5.0$

$$\cos 40 = \frac{6}{c}$$
 $c = 7.8$

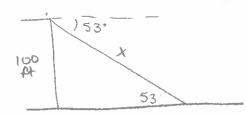
You are standing 20 feet away from a tree, and you measure the angle of elevation to be 38°. How tall is the tree?



$$tan 38 = \frac{x}{30}$$

$$x = 15.6 ft$$

You are standing on top of a building, looking at park in the distance. The angle of depression is 53°. If the building you are standing on is 100 feet tall, how far away is the park? Does your height matter?



Unit 5: Polynomial Operations

Monomial: number, variable, or the product of a number and a variable → only one term

Binomial: two terms
Trinomial: three terms

Polynomial: monomial or sum or difference of monomials → exponents on the variables must

be positive integers

Degree of a Monomial: sum of the exponents of its variable(s)

Degree of a Polynomial: degree of the term with the highest degree

Constant Term: term in a polynomial that has no variable

Leading Coefficient: the coefficient of the term with the highest power of the variable

Like Terms: terms with same variable raised to the same exponent

Unlike Terms: terms with different variables or the same variable raised to different exponents

Example: Expand and simplify.

a)
$$3(x+5)-7x(2x^2-x)$$

 $3x+15-14x^3+7x^2$
 $-14x^3+7x^2+3x+15$

b)
$$20x^3y^3 - 4x^3y^2(3x + 5y - xy)$$

 $20x^3y^3 - 12x^4y^2 - 20x^3y^3 + 4x^4y^3$
 $-12x^4y^2 + 4x^4y^3$

c)
$$(x + 4)(2x - 1)$$

 $2x^{2} - x + 8x - 4$
 $= 2x^{2} + 7x - 4$

d)
$$(4a-3b)^2 (4a-3b)$$

= $16a^2 - 12ab - 12ab + 9b^2$
= $16a^2 - 24ab + 9b^2$

e)
$$(3x-1)(2x+5)-5(8x+3)(2x-7)$$
 f) $(x^2-7)(4x^2-3x-1)$
 $(6x^2+15x-2x-5-5[16x^2-56x+6x-21]) (4x^4-3x^5-x^2-28x^2+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (4x^4-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (4x^4-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (4x^4-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (4x^4-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-50x-21) (6x^2-50x-21)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-50x-21)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-50x-21)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-3x^3-29x^4+21x+7)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-50x-21)$
 $(6x^2+13x-5-5(16x^2-50x-21)) (6x^2-50x-21)$

Unit 6: Factoring Polynomial Expressions

Factoring: write the sum or difference of monomials as a product of polynomials

- Rules: 1. Factor out the Greatest Common Factor from the polynomial
 - 2. Difference of Squares?
 - 3. Determine the sum and product integers. (a, b)
 - 4. No leading coefficient: (x + a)(x + b)Leading coefficient: method of decomposition.
 - 5. Check by expanding.

Note: to find the sum and product: if the product is positive, integers must either both be positive or both be negative, depending on the sum. If the product is negative, there must be one positive and one negative integer.

a)
$$x^2 + 8x + 12$$

= $(x + 6)(x + 3)$

b)
$$3x^3 + 21x^2 + 30x$$

 $3x (x^2 + 7x + 10)$
= $3x (x + 5)(x + 2)$

c)
$$x^2 - x - 12$$

$$(x - 4)(x + 3)$$

d)
$$3a^2-15ab-252b^2$$

 $3(a^2-5ab-84b^2)$
 $= 3(a-12b)(a+7b)$

e)
$$x^2 - 49$$

= $(x - 7)(x + 7)$

f)
$$25x^2 - 64y^2$$

= $(5x - 8y)(5x + 8y)$

g)
$$24x^{2} - 90x + 54$$

6 $(4x^{2} - 15x + 9)$
6 $(4x^{2} - 12x - 3x + 9)$
 $4x(x-3) - 3(x-3)$
= $(4x-3)(x-3)$

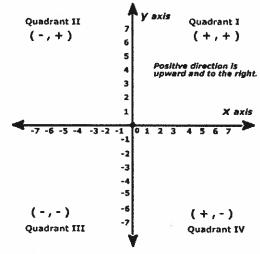
h)
$$6-7x-20x^{2}$$
 $-20x^{2}-7x+6$
 $-1(20x^{2}+7x-6)$
 $-1(20x^{2}+15x+8x-6)$
 $-1(30x^{2}+15x+8x-6)$
 $5x(4x+3)-2(4x+3)$
 $=-1(5x-2)(4x+3)$

Unit 7: Relations and Functions

Origin: usually labeled O, points (0, 0)

Ordered Pair: a specific point on a Cartesian plane. The numbers in the ordered plane are called coordinates.

Coordinates: x-coordinate and y-coordinate make up an ordered pair → can be plotted on a Cartesian plane



Discrete Variable: can only take on limited values

Continuous Variable: can take on every value within a particular interval

Relation: a comparison between two sets of elements

Dependent Variable/Output/Range: $y \rightarrow \text{vertical axis} \rightarrow \text{second coordinate}$ **Independent Variable/Input/Domain:** $x \rightarrow \text{horizontal axis} \rightarrow \text{first coordinate}$

Y-Intercept: y-coordinate of the ordered pair where the graph intersects the y-axis \rightarrow where x=0 **X-Intercept:** x-coordinate of the ordered pair where the graph intersects the x-axis \rightarrow where y=0

Example: Determine the x and y intercepts of the equation 3y = 5x + 15

Example: Determine the x and y intercepts of the equation
$$3y - 3x + 13$$

$$\frac{x \cdot n + y = 0}{3x \cdot 0} = \frac{4n + x = 0}{3x \cdot 0} = \frac{60,5}{3}$$

$$\frac{3x \cdot 0}{-15} = \frac{5x}{3} = \frac{5x \cdot 0}{3} + \frac{15}{3}$$

$$\frac{3y = 5x \cdot 0}{3} + \frac{15}{3}$$

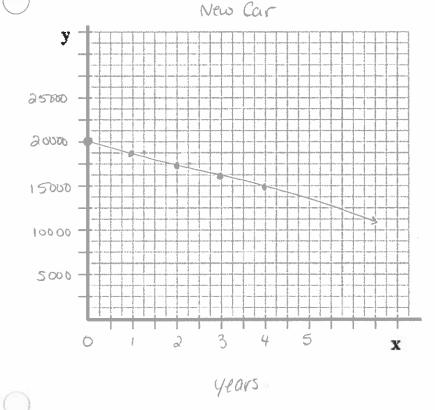
$$\frac{3y = 5x \cdot 0}{3} + \frac{15}{3}$$

$$\frac{3y = 5x \cdot 0}{3} + \frac{15}{3}$$

Interpolation: using the graph to find values lying between given points Extrapolation: extending the graph to predict values outside the plotted points

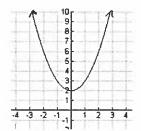
Example: Johnny purchases a new car for \$20 000. The value of the car can be represented by the formula $V = 20\,000 - 1250t$, where V is the value of the car in dollars, and t is the age of the car in years.

- i. Complete a table of values up to 4 years and plot them on the grid.
- ii. What does the ordered pair (0, 20 000) represent?
- Calculate the t-intercept and determine what this number represents. iii.
- iv. Calculate the value of the car after 3 years and 12 years.
- When will the car be worth \$2000? \$5500?



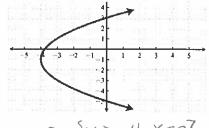
ii) yintercept, the value of the car was initial \$20000

Examples: Calculate the domain and range.



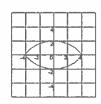
D: [XER]

R: {y ≥ 2, y ER?



0. {X = 4, X ER}

R: { YER]



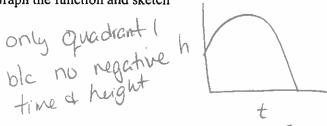
D: {-4 < x < 4, x < R}

R: { -2 < y < 2, y = e}

Example: The height of a human cannon ball, "Cano", can be described by the formula $h(t) = 12 + 6t - t^2$, where h(t) is the height in metres above ground level, and t is the time in seconds. Cano is projected out of a cannon from the top of a building and lands on a soft mat. The mat is placed in a hole in the ground so that the top of the mat is level with the ground.

* bonus question *

a) Graph the function and sketch



b) Write down appropriate window you used

x[0,12,1] y[0,25,1]

c) What is the height of the cannon above the ground?

d) How high is cano one second after he is launched?

$$h(1) = 12 + 6(1) - (1)^2$$

e) Write an appropriate domain and range for this relation.

D:
$$0 \le x \le and xint$$

 (7.6)
R: $0 \le y \le max yualue$
 $(a1)$

Function: a special type of relation in which each element of the domain is related to exactly one element of the range. Remember: Vertical Line Test \rightarrow only one x for every y

Unit 8: Characteristics of Linear Relations

$$Slope = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Example: Determine if $\triangle ABC$ is a right triangle if A (0, 1), B (-3, -3), and C (-7, 0).

$$M_{AB} = \frac{-3-1}{-3-0} = \frac{-4}{3} = \frac{4}{3}$$
 $M_{BC} = \frac{0-3}{-7-3} = \frac{3}{4}$
 $M_{AC} = \frac{0-1}{-7-0} = \frac{-1}{-7} = \frac{1}{7}$
 $M_{AB} = \frac{3-1}{-7-3} = \frac{3}{-4}$
 $M_{AB} = \frac{3-1}{-7-3} = \frac{3-1}{-4}$
 $M_{AB} = \frac{3-1}{-7-3} = \frac{3-1}{-7-3} = \frac{3-1}{-7-3}$

Slope: of a line segment is the measure of the steepness Rise: change in vertical height between endpoints Run: change in horizontal length between endpoints

Note: Horizontal line segments have a slope of 0 and vertical line segments have a slope that is undefined.

A line that rises from left to right has a **positive slope**. A line that falls from left to right has a **negative slope**.

Example: Determine the slope of PQ when P(4, 7) and Q(12, 3).

$$M = \frac{3-7}{12-4} = \frac{-4}{8} = -\frac{1}{2}$$

Example: A line segment has a slope of $-\frac{5}{7}$ and a rise of 12. Calculate the run.

$$-\frac{5}{7} = \frac{12}{X}$$
 $-5x = 84$ $X = -16.8$

Collinear: points that lie on the same line → have same slopes

Parallel: line segments that have the same slope

Perpendicular: line segments are negative reciprocals of one another → product of both slopes is -1

Example: Determine the parallel and perpendicular slopes of a line segment with points A(3, 7) and B(9, 2).

$$M = \frac{2-7}{9-3} = \frac{-5}{6}$$

Unit 9: Equations of Linear Relations

Linear Equation: an equation of the form y = mx + b where m is the slope and b is the yintercept. The graph of a linear equation is a straight line

Slope Y-Intercept Form: y = mx + b

Example: Write an equation of a line with point (0, 2) and slope $\frac{5}{2}$.

Example: Write and equation of a line passing through the points (0, 9) and (11, 14)

$$M = \frac{14-9}{11-0} = \frac{5}{11} \times +9$$

$$y = \frac{5}{11}x + 9$$

Standard/General Form: $Ax + By + C = 0 \Rightarrow positive A,B, and C values \Rightarrow no fractions$

Example: Determine the slope of the line 2x - 5y + 3 = 0

$$5y = 2x + 3$$
 $y = \frac{2}{5}x + \frac{3}{5}$ $M = \frac{2}{5}$

Example: Rewrite the line $y = \frac{4}{7}x + 8$ in general form.

$$7y = 4x + 56$$

$$0 = 4x - 7y + 56$$

Example: Write the equation of a line perpendicular to 5x + 2y - 7 = 0 and with the same yintercept as 7x - 6y + 1 = 0. Answer in general form.

$$-2y = 5x - 7$$

$$y = 1 + 1 = 0$$

$$y = -5x + 7$$

$$y = -5$$

$$y = -6$$

$$y = -6$$

$$(y = \frac{2}{5}x + \frac{1}{6})^{30}$$

$$30y = 12x + 5$$

$$0 = 12x - 30y + 5$$

Slope-Point Form: $y - y_1 = m(x - x_1)$ where m is the slope of a line and x_1, y_1 is a coordinate.

Example: Determine the equation of a line with the points (4, 2) and (-1, 7).

$$m = \frac{7-2}{-1-4} = \frac{5}{-5} = -1$$
 $y-2 = -(x-4)$ or $y-7 = -1(x+1)$

$$y-2=-(x-4)$$
or

Example: Determine the slope and coordinate of the line y + 7 = 2(x - 4).

Example: Find the equation, in general form, of the line perpendicular to the line 9x - 3y + 5 = 0and same x-intercept as the line 4x - 3y - 3 = 0. y-0== (x-3)

$$\frac{3y - 9x + 5}{3}$$

and same x-intercept as the line
$$4x - 3y - 3 = 0$$
.

$$3y = 9x + 5$$

$$4x - 3x = 3$$

$$1 - \frac{3}{3}$$

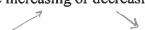
$$x = \frac{3}{4}$$

$$x = \frac{3}{4}$$

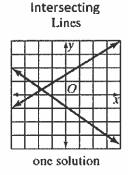
$$y = 3x + \frac{5}{3}$$

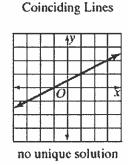
$$x = \frac{3}{4} \left(\frac{3}{4} / 0 \right)$$

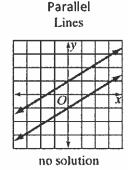
Rate of Change: slope → can be increasing or decreasing



Unit 10: Systems of Equations





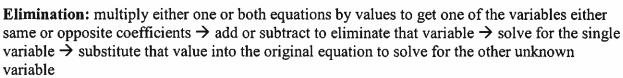


 $(y = -\frac{1}{3}x + \frac{1}{4})^{-12}$

-12y = 4x - 30 = 4x + 12y - 3

Graphing: isolate $y \rightarrow \text{graph } y_1 \text{ and } y_2 \rightarrow \text{find intersect}$

Substitution: isolate one variable \rightarrow substitute the solution into the other equation \rightarrow solve for the single variable \rightarrow substitute that value into original equation to determine value of other variable

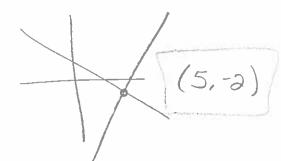


Example: Solve the following systems of equations.

$$2x + 3y = 4$$
$$4x - y = 22$$

Solve graphically:

$$3y = -2x+4$$
 $-y = -4x+22$
 $y_1 = -\frac{2}{3}x + \frac{4}{3}$ $y_2 = 4x - 22$



Solve algebraically:

$$\frac{4x + 6y = 8}{4x - y = aa}$$

$$\frac{7y = -14}{7}$$

$$y = -2$$

Solve algebraically:

$$4x + 6y = 8$$

 $4x - y = aa$
 $4x - y = aa$
 $4x - 2aa$
 $4x - 2aa$

$$5a + 3b = 3$$

 $3a - 7b = 81$

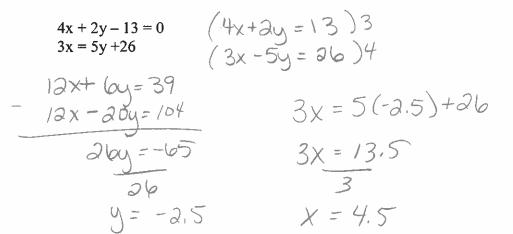
Graphically:

Graphically:

$$3b = -5a + 3$$
 $-7b = -3a + 81$
 $b = -\frac{5}{3}a + 1$ $b = \frac{3}{7}a - \frac{81}{7}$

Algebraically:

Example: Solve the following system of equations using the method of your choice.



Example: Eli has a part-time job at the Snack Shack. On Saturday she sold 76 cones and 49 drinks for total revenue of \$179.55. On Sunday, she sold 54 cones and 37 drinks for total revenue of \$129.65. Find the price of each item.

C=8core (76c + 49d = 179.55) 37
$$2812c + 18.135d = 6643.35$$
 $d=8drink$ (54c + 37d = 129.65) $H9 = 2646c + 18435d = 6352.85$

$$54(1.75) + 37d = 139.65$$

$$-94.5$$

$$37d = 35.15$$

$$d=6643.35$$

$$166c = 290.5$$

$$166$$

$$-94.5$$

$$37d = 35.15$$

$$d=6.043.35$$

$$166c = 290.5$$

Example: Movie tickets are priced at \$8 for adults and \$4 for children. If 600 tickets were sold for a movie and the total amount of money collected was \$4000, how many tickets of each type were purchased?

$$a = \# 0f \text{ adult}$$
 $8a + 4e = 4000$ $8a + 4e = 4000$
 $c = \# 8f \text{ children}$ $(a + c = 600)4 - 4a + 4e = 3400$
 $4a = 1600$
 $-460 - 460$
 $c = 300 \text{ children}$ $a = 400 \text{ adults}$

1

(4.5, -2.5)