1. Solve the following triangles for all missing sides and angles.

$$\cos 6 = \frac{\alpha}{h}$$
 $\cos 56.5^{\circ} = \frac{38.91}{9}$
 $9 = \frac{38.91}{\cos 56.5}$
 $9 = 70.5$

ton
$$\theta = \frac{0}{a}$$

 $r = 588$
tan $56.5^{\circ} = \frac{r}{38.91}$
 $r = 38.91 \times +0.156.5^{\circ}$

2. A guy wire is attached to a tower at a point that is 10 m above the ground. The wire is anchored 21 m from the base of the tower. What angle, to the nearest degree, does the guy wire make with the ground?

$$\tan \theta = 0$$

$$\tan \theta = \frac{10}{21}$$

$$\angle = 25^{\circ}$$

$$\tan \theta = \frac{0}{a}$$

$$tan 480 = \frac{x}{125}$$

$$x = 135 \times tan 48^{\circ}$$

$$x = 139m$$

A helicopter is hovering 200 m above a road. A car stopped on the side of the road is 300 m from the helicopter. What is the angle of elevation of the helicopter measured from the car, to the nearest degree?

$$\sin \Theta = \frac{0}{h}$$

$$\sin \theta = \frac{200}{300}$$

5. A ladder is 13.0 m long. It leans against a wall. The base of the ladder is 3.7 m from the wall. What is the angle of inclination of the ladder to the nearest tenth of a degree?

$$\cos \Theta = \frac{3.7}{13}$$

6. A guy wire is attached to a tower at a point that is 7.5 m above the ground. The angle of inclination of the wire is 67°. Determine the length of the wire to the nearest tenth of a metre.

$$\sin 67^{\circ} = \frac{7.5}{x}$$

$$\chi = \frac{7.5}{\sin 670}$$

7. A balloon is flying at the end of a 170-m length of string, which is anchored to the ground. The angle of inclination of the string is 50°. Calculate the height of the balloon to the nearest metre.

$$\sin \Theta = \frac{0}{h}$$

$$\sin 50^\circ = \frac{\chi}{\pi}$$

$$\chi = 170 \times \sin 50^{\circ}$$

$$\sin \theta = \frac{0}{h}$$

$$\sin 430 = \frac{14}{2}$$

9. At a point 25 ft. from the base of a totem pole, the angle of elevation of the top of the pole is 50.1°. How tall is the totem pole to the nearest foot?

$$\tan \theta = 0$$

$$tan 50.10 = \frac{x}{25}$$

$$\chi = 30 ft$$

10. The front of a tent has the shape of an isosceles triangle with equal sides 163 cm long. The measure of the angle at the peak of the tent is 105°. Calculate the maximum headroom in the tent to the nearest centimetre.

$$\alpha = 163 \times (0552.5^{\circ})$$
 $\alpha = 99_{cm}$

11. Determine the length of RS to the nearest tenth of a centimetre.

$$q = \frac{8.9}{\sin 390}$$

 $q = 14.1 \text{ cm}$

$$\cos \theta = \frac{a}{h}$$

$$\cos 540 = \frac{t}{14.1}$$

12. Two trees are 55 yd. apart. From a point halfway between the trees, the angles of elevation of the tops of the trees are measured. What is the height of each tree to the nearest yard?

x = 19yd

(2)
$$\tan \theta = \frac{0}{a}$$

13. From the top of an 80-ft. building, the angle of elevation of the top of a taller building is 49° and the angle of depression of the base of this building is 62°. Determine the height of the taller building to the nearest foot.

(2)
$$\tan \theta = \frac{0}{a}$$

$$y = 49 \text{ ft}$$

 $49+80 = 129 \text{ ft}$

1) tan 0=0

$$\alpha$$
 tan 62° $0 = \frac{80}{2}$ $7c = 42.5$

- $+ an 6a^{\circ} = \frac{80}{x}$ $\pi = 42.5$
- 14. Two trees are 96 m apart. From a point halfway between the trees, the angles of elevation of the tops of the trees are 10° and 19°. To the nearest tenth of a metre, how much taller is one tree than the other?

$$tan 190 = 4$$
 48
 $y = 48 \times tan 19^{\circ}$
 $y = 16.5$